

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 170 (2003) 320-329

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

High-pressure preparation, crystal structure, and properties of the new rare-earth oxoborate β -Dy₂B₄O₉

Hubert Huppertz,* Sandra Altmannshofer, and Gunter Heymann

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13 (Haus D), 81377 München, Germany Received 30 July 2002; received in revised form 19 September 2002; accepted 24 September 2002

Abstract

In this work we report about a new rare-earth oxoborate β -Dy₂B₄O₉ synthesized under high-pressure/high-temperature conditions from Dy₂O₃ and boron oxide B₂O₃ in a B₂O₃/Na₂O₂ flux with a walker-type multianvil apparatus at 8 GPa and 1000°C. Single crystal X-ray structure determination of β -Dy₂B₄O₉ revealed: $P\bar{1}$, a=616.2(1) pm, b=642.8(1) pm, c=748.5(1) pm, $\alpha=102.54(1)^\circ$, $\beta=97.08(1)^\circ$, $\gamma=102.45(1)^\circ$, Z=2, RI=0.0151, $wR_2=0.0475$ (all data). The compound exhibits a new structure type which is built up from bands of linked BO₃- (Δ) and tetrahedral BO₄-groups (\Box). The Dy³⁺-cations are positioned in the voids between the bands. According to the conception of fundamental building blocks β -Dy₂B₄O₉ can be classified with the notation $2\Delta 6 \Box : \Delta \langle 3 \Box \rangle = \langle 4 \Box \rangle = \langle 3 \Box \rangle \Delta$. Furthermore we report about temperature-resolved in situ powder diffraction measurements and IR-spectroscopic investigations on β -Dy₂B₄O₉.

© 2002 Elsevier Science (USA). All rights reserved.

Keywords: High-pressure; Multianvil; β -Dy₂B₄O₉; Borates; Crystal structure

1. Introduction

Recent research in synthesis and characterization of new inorganic borates has focused on their interesting physical properties, which make them attractive for numerous practical applications as optical compounds, for instance, materials for second harmonic generation or host materials for fluorescence [1–3]. The rare-earth borates were synthesized starting from boron oxide B_2O_3 and the rare-earth oxides Ln_2O_3 whereby compound formation was observed for the molar ratios 1:1, 1:3, and 3:1 as shown below [4]:

$$\mathbf{B}_2\mathbf{O}_3 + Ln_2\mathbf{O}_3 \to 2 \ Ln\mathbf{B}\mathbf{O}_3,\tag{1}$$

 $B_2O_3 + 3 Ln_2O_3 \rightarrow 2 Ln_3BO_6, \tag{2}$

$$3 B_2 O_3 + Ln_2 O_3 \to 2 Ln B_3 O_6.$$
(3)

The rare-earth orthoborates $LnBO_3$ exhibit polymorphism, which led to a large number of studies concerning their crystallographic structures and chemical properties [5]. Recently, we were able to synthesize two new polymorphs χ -DyBO₃ and χ -ErBO₃, which contain layers built up from the new non-cyclic $[B_3O_9]^{9-}$ -anions exhibiting one trigonal BO₃- (Δ) and two tetrahedral BO₄-groups (\Box) according to $1\Delta 2\Box : \Delta 2\Box$ [6].

It has been known that rare-earth borates of the composition " Ln_3BO_6 " crystallize in three different monoclinic structures [7] as Ln varies from La to Lu. Bartram determined the space groups of these compounds by Weissenberg techniques and refined the lattice constants from X-ray powder diffraction patterns [8]. The compounds were reported to crystallize in four different space groups, i.e., $P2_1/c$ for Ln = La to Nd and C2/m, C2, or Cm for Ln = Pm to Yb. The composition of these compounds was established by phase analysis only and was considered to be the most rare-earth cation-rich phase in the system Ln_2O_3 -B₂O₃.

Recently, Lin et al. established the crystal structures of "La₃BO₆" [9], "Y₃BO₆" [10], and "Gd₃BO₆" [11] where they found that the compositions of these compounds are not as simple as those proposed previously. From the single-crystal structure analysis, the composition of the lanthanum compound was found to be La₂₆(BO₃)₈O₂₇, which shows a slight La₂O₃ excess relative to La₃BO₆ (8 La₃BO₆ · La₂O₃). In contrast to these results, the yttrium compound Y_{17,33}(BO₃)₄ (B₂O₅)₂O₁₆ and the gadolinium compound

^{*}Corresponding author. Fax: +49-89-2180-7806.

E-mail address: huh@cup.uni-muenchen.de (H. Huppertz).

^{0022-4596/03/\$ -} see front matter O 2002 Elsevier Science (USA). All rights reserved. doi:10.1016/S0022-4596(02)00099-3

 $Gd_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, determined by X-ray powder diffraction data, were found to have an excess of borate. Although the Rietveld refinements resulted in fairly residual values, a couple of uncertainties remained.

 LnB_3O_6 metaborates were obtained with Ln = Y, La, Ce, Pr, Nd by Canneri [12], with Ln = Pr to Tb (except Pm) by Tananaev et al. [13], with Ln = La to Tb by Bambauer et al. [14], and with Ln = Y, Dy to Lu by Tananaev et al. [15]. Recently, a new structure refinement on monoclinic $Pr(BO_2)_3$ was carried out by Sieke et al. [16].

All these oxoborates are characterized by a high structural flexibility caused in the linkage of planar/non-planar BO₃-groups and BO₄-tetrahedra, which can occur as isolated or condensed fundamental building blocks.

Searching for new compounds in the system Ln_2O_3 -B₂O₃, we found that it is possible to realize the new compositions $Ln_4B_6O_{15}$ (Ln=Dy, Ho) [17, 18] and α - $Ln_2B_4O_9$ (Ln=Eu, Gd, Tb, Dy) [19]¹ under extreme high-pressure/high-temperature conditions:

$$3 B_2 O_3 + 2 Ln_2 O_3 \xrightarrow{\text{HP/HT}} Ln_4 B_6 O_{15}, \qquad (4)$$

$$2 B_2 O_3 + Ln_2 O_3 \xrightarrow{\text{HP/HT}} \alpha - Ln_2 B_4 O_9.$$
(5)

In contrast to all nearly 500 structurally characterized oxoborates, wherein the linkage of BO_3 - and BO_4 -units occurs exclusively via corners, it can be pointed out that these oxoborates are the first examples exhibiting edge-sharing BO_4 -tetrahedra next to corner-sharing BO_4 -tetrahedra.

In this work, we report about our further attempts to explore for quaternary phases in the system Na–Dy– B–O under high-pressure/high-temperature conditions. In contrast to an expected quaternary phase, our synthesis resulted in a new polymorph β -Dy₂B₄O₉, whereby the added Na₂O₂ or Na₂CO₃ with a surplus of B₂O₃ acted as flux materials.

2. Experimental

According to the following equation, the new polymorph β -Dy₂B₄O₉ is synthesized from B₂O₃ (from H₃BO₃ (99.8%, Merck, Darmstadt) fired at 600°C) and the rare-earth oxide Dy₂O₃ (99.9%, Sigma-Aldrich, Taufkirchen) with additional Na₂O₂ and B₂O₃ as a flux.

$$2 B_2 O_3 + Dy_2 O_3 \frac{Na_2 O_2 / B_2 O_3 Flux}{8.0 \text{ GPa}, 1000^\circ C} \beta - Dy_2 B_4 O_9.$$
(6)

The exact molar ratio including the flux materials was $B_2O_3:Dy_2O_3:Na_2O_2 = 3:1:1$. All compounds were mixed thoroughly under air and loaded into a 3.66 mm outside diameter, 0.33 mm wall thickness, and 6.0 mm length hexagonal boron nitride cylinder that was sealed by a BN plate. The sample cylinder was placed in the center of a cylindrical resistance heater (graphite) that had a variable (stepped) wall thickness in order to minimize the thermal gradient along the sample [20-23]. MgO rods filled the space at the top and the bottom of the sample. A cylindrical zirconia sleeve surrounding the furnace provided thermal insulation. As pressure medium, Cr₂O₃-doped MgO octahedra (Ceramic Substrates & Components Ltd., Isle of Wight) with an edge length of 18 mm was used. A hole was drilled in the octahedron, the cylindrical assembly positioned inside and contacted with a molybdenum ring at the top and a molybdenum plate at the bottom. The experimental temperature was monitored using a Pt/Pt₈₇Rh₁₃ thermocouple that was inserted axially into the octahedral assembly with the hot junction in contact with the boron nitride cylinder. Eight tungsten carbide cubes separated by pyrophyllite gaskets (Plansee, Reutte, TSM10, edge length: 32 mm) with a truncation of 11 mm were used to compress the octahedron ("18/11 assembly" in conventional terminology) via a modified Walker-style splitcylinder multianvil apparatus [20]. For further details concerning the Walker-type module and multianvil experiments, see Refs. [21-23].

For the synthesis of β -Dy₂B₄O₉, the assembly was compressed in 3 h to 8 GPa and heated up to 1000°C in the following 10 min. After holding this temperature for 6 min, the sample was quenched by turning off the power with a quench rate of $> 500^{\circ}$ C/s. After decompression the recovered experimental octahedron was broken apart and the sample carefully separated from the surrounding BN. The sample showed mainly colorless crystalline parts next to colorless amorphous areas. Investigations via EDX with a Jeol JFM-6500F (Analytical Field Emission Scanning Electron Microscope) clearly exhibited that in the crystalline parts, the elements dysprosium, boron, and oxygen were detectable, whereas in the amorphous regions also sodium was found next to dysprosium, boron, and oxygen. The separation of colorless single crystals of β -Dy₂B₄O₉ worked without any difficulties. Fig. 1 shows the powder diffraction pattern of the bulk material (Fig. 1a) in comparison to the simulated powder pattern of β - $Dy_2B_4O_9$ (Fig. 1b). Nearly all reflections of the measured pattern correspond to the simulation. Surplus Na₂O₂, the thermal decomposition product Na₂O $(Na_2O_2 \rightarrow Na_2O + 1/2 O_2)$, B₂O₃, or additional reaction products of these materials remain mainly in the amorphous state.

To investigate the reactions in the system $B_2O_3/Dy_2O_3/Na_2O_2$, we performed further experiments with

¹H. Huppertz, unpublished results; the obtained diffraction pattern of α -Dy₂B₄O₉ was indexed on the basis of a monoclinic unit cell. The lattice parameters (*a* = 2520.2(4) pm, *b* = 440.6(1) pm, *c* = 2478.2(6) pm, β = 99.90(1)°) were obtained from least square fits of the powder data. α -Dy₂B₄O₉ is isotypic to α -Ln₂B₄O₉ (*Ln* = Eu, Gd, Tb) [19].

Fig. 1. Powder pattern of the bulk-material (a) (transmission geometry) and simulated powder pattern (b) of β -Dy₂B₄O₉. Deviations of the intensities result from texture effects.

Table 1

Results of the experiments in the system $B_2O_3/Dy_2O_3/Na_2O_2$ with various molar ratios. In the bottom part of the table Na_2O_2 was substituted by Na_2CO_3

B_2O_3	Dy_2O_3	Na ₂ O ₂	Result
3	1	1	β -Dy ₂ B ₄ O ₉
2	1	1	α -Dy ₂ B ₄ O ₉
2	1	0	α -Dy ₂ B ₄ O ₉
3	1	0	Mainly β -Dy ₂ B ₄ O ₉
B ₂ O ₃	Dy ₂ O ₃	Na ₂ CO ₃	Result
3	1	1	β -Dy ₂ B ₄ O ₉

various molar ratios. Table 1 gives an overview of the molar ratios used under comparable high-pressure/hightemperature conditions. The best result for the successful synthesis of β -Dy₂B₄O₉ in the system B₂O₃/Dy₂O₃/ Na₂O₂ was reached using a molar ratio of 3:1:1. Less B_2O_3 (2:1:1) or reactions without Na₂O₂ (2:1:0) resulted in the synthesis of α -Dy₂B₄O₉. Synthesis in a surplus of B_2O_3 without Na₂O₂ resulted mainly in β -Dy₂B₄O₉ with additional reflections of a second phase in the powder pattern. Apparently, the combination of surplus B_2O_3 with Na_2O_2 is the best flux-composition for the synthesis of β -Dy₂B₄O₉. It is also possible to substitute Na₂O₂ by Na_2CO_3 (Table 1, bottom). In contrast to the colorless reaction product using Na₂O₂, the usage of Na₂CO₃ leads to a black sample. A closer view with an optical microscope exhibits a mixture of colorless crystals (β - $Dy_2B_4O_9$ in combination with black powder. Evidently, the flux material is colored black by graphite from the decomposition of Na₂CO₃. At this point, we want to mention that until now nothing can be said about the composition or decomposition of the flux-material under these extreme high-pressure/high-temperature conditions.

In fact at normal pressure, there exist several sodiumrich borates like NaBO₂ [24], Na₄B₂O₅ [25], Na₃BO₃ [26] and also boron-rich phases like α -Na₂O · 3 B₂O₃ [27], β -Na₂O · 3 B₂O₃ [28], or Na₂O · 4 B₂O₃ [29] synthesized from the starting materials Na₂O and B₂O₃. Additionally, Mascetti et al. and Zhang et al. reported about rare-earth sodium borates Na₃Ln(BO₃)₂ (Ln = La, Nd [30]) (Ln = Y, Gd [31]). Nevertheless, there are several synthetic routes using mixtures of Na₂O/B₂O₃ as a flux material. For example, the synthesis of $M(BO_2)_3$ with M=Y, Dy to Lu is performed from a flux with the composition Na₂O · 19 B₂O₃ [15] without incorporating sodium into the reaction product.

3. Crystal structure analysis

The powder diffraction data of β -Dy₂B₄O₉ were collected on a STOE Stadi P powder diffractometer with monochromized CuK α_1 radiation. The obtained diffraction pattern was indexed with the program ITO [32] on the basis of a primitive unit cell. The lattice parameters (a=617.0(1)pm, b=643.4(1)pm, c=749.0(1)pm, α =102.56(1)°, β =97.08(2)°, γ = 102.47(2)°, Table 2) were obtained from least-squares fits of the powder data. The correct indexing of the pattern was ensured by intensity calculations² taking the atomic positions from the structure refinements. The lattice parameters determined from the powder and the single crystal agreed well (Table 2).

Small single crystals were isolated by mechanical fragmentation and examined by Buerger precession photographs. Single-crystal intensity data were collected from a regularly shaped colorless crystal (block) at room

²WinX^{POW} Software, STOE & CIE GmbH, Darmstadt, (1998).

temperature by use of an Enraf-Nonius Kappa CCD equipped with a rotating anode (MoK α radiation (λ =71.073 pm)). A numerical absorption correction (HABITUS [33]) was applied to the data. All relevant information concerning the data collection are listed in Table 2. A systematic analysis of the dataset showed that no systematic extinctions were observed which is compatible with the space groups P1 and P1. The centrosymmetric group was found to be correct during the structure refinement. The starting positional parameters were deduced from an automatic interpretation of direct methods with SHELXS-97 [34] and the structure was successfully refined with anisotropic atomic displacement parameters for all atoms using SHELXL-97 (full-matrix least-squares on F^2) [35]. Final view of the crystal structure along [001]. Inside the bands the BO₄-tetrahedra (hatched polyhedra) form three membered rings which are quite common in borate crystal chemistry [36]. These B₃O₉-rings are linked to the next B₃O₉-ring via two trigonal BO₃-groups forming a six-membered ring (Fig. 4). Additionally, the B₃O₉-ring is connected to the next B₃O₉-unit via two common corners forming a four-membered ring (Fig. 5). In contrast to our expectation that the application of high-pressure during the synthesis would favor the formation of a tetrahedral oxygen coordination of boron, we observe both trigonal and tetrahedral coordination in β -Dy₂B₄O₉. Similar observations are made in the orthoborates χ -DyBO₃ and χ -ErBO₃ synthesized under comparable conditions [6].

A classification of β -Dy₂B₄O₉ with the help of the "fundamental building block"-conception (FBB) after Burns et al. [37, 38] leads to the notation $2\Delta 6\Box$: $\Delta \langle 3\Box \rangle = \langle 4\Box \rangle = \langle 3\Box \rangle \Delta$. Fig. 5 shows the BO₃and BO₄-units (encircled) which build up the fundamental building block. From our knowledge, this fundamental building block is described in this paper for the first time. This result is confirmed by Becker [36] who worked out a statistical analysis of the occurrence of different anhydrous borate fundamental building blocks and their frequency of occurrence.

The B–O bond lengths in the nearly planar BO₃-group $(\Sigma = 359.6^{\circ})$ vary between 136 and 140 pm (Table 4) with a mean value of 137.6 pm which is in good agreement to the average B–O distance of 137 pm [39] in planar and non-planar BO₃-units. The O–B–O angles in this BO₃-group are between 115° and 123° (Table 5). In the tetrahedral BO₄-groups of β -Dy₂B₄O₉, the B–O distances shift between 142 and 156 pm with an average value of 147.5 pm (Table 4) which is also consistent to the average B–O distance of 147 pm [39] in tetrahedral BO₄-units of oxoborates. The O–B–O angles in the three crystallographically independent BO₄-tetrahedra are between 101° and 123° (Table 5), whereby the upper

Table 2 Crystal data and structure refinement for β -Dy₂B₄O₉

Empirical formula	β -Dy ₂ B ₄ O ₉
Molar mass	512.24 g/mol
Crystal system	Triclinic
Space group	<i>P</i> 1̄ (No. 2)
Powder diffractometer	STOE Stadi P
Radiation	$CuK\alpha_1 \ (\lambda = 154.06 \text{ pm})$
Unit-cell dimensions	$a = 617.0(1) \mathrm{pm}$
	$b = 643.4(1) \mathrm{pm}$
	$c = 749.0(1) \mathrm{pm}$
	$\alpha = 102.56(1)^{\circ}$
	$\beta = 97.08(2)^{\circ}$
	$\gamma = 102.47(2)^{\circ}$
Volume	$0.278(1) \mathrm{nm}^3$
Diffractometer	Enraf-Nonius Kappa CCD
Radiation	MoK α ($\lambda = 71.073$ pm)
Unit-cell dimensions	$a = 616.2(1) \mathrm{pm}$
	b = 642.8(1) pm
	$c = 748.5(1) \mathrm{pm}$
	$\alpha = 102.54(1)^{\circ}$
	$\beta = 97.08(1)^{\circ}$
	$\gamma = 102.45(1)^{\circ}$
Formula units per cell	Z=2
Calculated density	$6.118 \mathrm{g/cm^3}$
Crystal size	$0.04 \times 0.05 \times 0.07 \mathrm{mm^3}$
Detector distance	30.0 mm
Exposure time/degree	180 s
Absorption coefficient	$26.7 \mathrm{mm}^{-1}$
$F(0\ 0\ 0)$	448
θ range	3.3–32.5°
Range in hkl	$\pm 9, \pm 9, \pm 11$
Scan type	$arphi/\omega$
Total no. of reflections	9591
Independent reflections	2015 ($R_{\rm int} = 0.0335$)
Reflections with $I > 2\sigma(I)$	1961 ($R_{sigma} = 0.0304$)
Data/parameters	2015/137
Absorption correction	Numerical (HABITUS [33])
Transm. ratio (max/min)	1.52
Goodness-of-fit on F^2	1.230
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0139$
	$WR_2 = 0.0384$
R indices (all data)	$R_1 = 0.0151$
	$wR_2 = 0.0475$
Extinction coefficient	0.0291(7)
Largest diff. peak and hole	1.29 and -1.21 e/Å^3

difference Fourier syntheses revealed no significant residual peaks (see Table 2). Final positional and thermal displacement parameters together with the interatomic distances are listed in Tables 3–5. Listings of the observed/calculated structure factors and other details are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), e-mail: crysdata@fiz-karlsruhe.de, by quoting the registry number CSD-412659.

The crystal structure of β -Dy₂B₄O₉ (Fig. 2) is built up from bands of linked BO₃-triangles and BO₄-tetrahedra. The bands run along [100] whereas the Dy³⁺-cations are positioned in the voids between the bands. Fig. 3 gives a

4. Results and discussion

Table 3	
Atomic coordinates and anisotropic displacement parameters (Å ²) for β -Dy ₂ B ₄ O ₉ (space group $P\overline{1}$)	

Atom	Wyckoff position	X	у	Ζ	$U_{ m eq}{}^{ m a}$	
Dy1	2 <i>i</i>	0.8880(1)	0.6776(1)	0.3597(1)	0.0038(1)	
Dy2	2 <i>i</i>	0.5474(1)	0.0912(1)	0.2851(1)	0.0035(1)	
01	2 <i>i</i>	0.5038(4)	0.7889(4)	0.0200(3)	0.0043(4)	
O2	2i	0.4206(4)	0.1835(4)	0.5554(4)	0.0045(4)	
O3	2 <i>i</i>	0.2356(4)	0.7353(4)	0.2109(3)	0.0039(4)	
O4	2 <i>i</i>	0.7796(4)	0.4067(4)	0.5233(4)	0.0045(4)	
O5	2 <i>i</i>	0.1374(4)	0.7156(4)	0.8574(4)	0.0048(4)	
O6	2 <i>i</i>	0.5397(4)	0.5387(4)	0.7483(4)	0.0045(4)	
O 7	2i	0.7733(4)	0.5717(4)	0.0409(4)	0.0037(4)	
O 8	2 <i>i</i>	0.8126(4)	0.8691(4)	0.8817(4)	0.0054(4)	
O9	2i	0.0668(4)	0.9541(4)	0.6764(4)	0.0059(4)	
B1	2 <i>i</i>	0.7326(6)	0.3356(6)	0.9812(5)	0.0032(6)	
B2	2 <i>i</i>	0.6616(6)	0.6813(6)	0.9268(5)	0.0036(6)	
B3	2i	0.6259(6)	0.3581(6)	0.6516(5)	0.0037(6)	
B4	2 <i>i</i>	0.0049(7)	0.8537(6)	0.8121(5)	0.0047(6)	
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Dy1	0.0042(1)	0.0042(1)	0.0034(1)	0.0013(1)	0.0008(1)	0.0017(1)
Dy2	0.0041(1)	0.0037(1)	0.0028(1)	0.0006(1)	0.0008(1)	0.0012(1)
O1	0.004(1)	0.004(1)	0.004(1)	-0.0006(8)	0.0008(8)	0.0011(8)
O2	0.003(1)	0.005(1)	0.005(1)	0.0006(8)	-0.0005(8)	0.0010(8)
O3	0.004(1)	0.006(1)	0.003(1)	0.0020(8)	0.0008(8)	0.0027(8)
O4	0.004(1)	0.006(2)	0.004(1)	0.0019(8)	0.0020(8)	0.0018(8)
O5	0.006(2)	0.006(2)	0.004(1)	0.0019(9)	0.0011(9)	0.0042(9)
O6	0.004(2)	0.005(1)	0.005(1)	0.0001(8)	0.0002(9)	0.0028(8)
O 7	0.005(2)	0.002(1)	0.004(1)	0.0006(8)	-0.0009(9)	-0.0002(8)
O 8	0.004(2)	0.006(2)	0.008(2)	0.0035(9)	0.0023(9)	0.0015(9)
O9	0.006(2)	0.008(2)	0.005(1)	0.0041(9)	0.0025(9)	0.0029(9)
B1	0.004(2)	0.003(2)	0.002(2)	0.000(2)	0.000(2)	0.001(2)
B2	0.002(2)	0.004(2)	0.003(2)	0.001(2)	-0.001(2)	-0.001(2)
B3	0.003(2)	0.004(2)	0.004(2)	0.001(2)	0.001(2)	0.001(2)
B4	0.005(2)	0.005(2)	0.005(2)	0.002(2)	0.002(2)	0.003(2)

 $^{a}U_{\mathrm{eq}}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor

Table 4 Interatomic distances (pm) calculated with the single-crystal lattice parameters in β -Dy₂B₄O₉

Dy1–O7	230.8(3)	Dy2–O2a	226.3(3)				
Dy1–O4a	234.5(3)	Dy2–O2b	236.4(3)				
Dy1–O2	236.7(3)	Dy2–O1a	239.9(3)				
Dy1–O4b	236.7(3)	Dy2–O4	242.6(3)				
Dy1–O9a	240.2(3)	Dy2–O9	244.7(3)				
Dy1-O3	252.8(3)	Dy208	249.9(3)				
Dy1–O9b	258.4(3)	Dy2–O5	254.9(3)				
Dy1-06	263.4(3)	Dy2-O3	255.4(3)				
Dy1–O5	265.2(3)	Dy2–O1b	256.9(3)				
		Dy2–O6	260.5(3)				
B1O7	144.2(4)	B2–O7	142.3(4)	B3–O4	146.4(5)	B4–O8	136.6(5)
B1-O3	146.1(4)	B2-O6	145.3(5)	B3-O6	146.6(5)	B4O9	136.7(4)
B1-O1	150.1(5)	B2-O1	146.9(5)	B3-O2	148.1(5)	B4-O5	139.5(5)
B1-O5	150.2(4)	B2–O8	148.5(4)	B3-O3	155.5(5)		
	$\emptyset = 147.7$		$\emptyset = 145.8$		Ø = 149.2		Ø = 137.6

(Standard deviations in parentheses. The letters a and b indicate symmetry equivalent oxygen atoms, which coordinate to the corresponding Dy^{3+} in different interatomic distances.)

value is remarkably high. For comparison the O–B–O angles in tetragonal γ -LiBO₂ prepared at 1.5 GPa and 950°C do not exceed 114° [40]. Recently, we reported

about two new rare-earth orthoborates χ -DyBO₃ and χ -ErBO₃ [6] synthesized under similar high-pressure conditions, wherein the BO₄-tetrahedra exhibit similar

Table 5
Interatomic angles (deg) calculated with the single-crystal lattice parameters in β -Dy ₂ B ₄ O ₉ (standard deviations in parentheses)

O7–B1–O3	111.5(3)	O7-B2-O6	113.7(3)	O4-B3-O6	117.5(3)
O7-B1-O1	114.7(3)	O7-B2-O1	112.2(3)	O4–B3–O2	111.5(3)
O3-B1-O1	103.9(3)	O6-B2-O1	108.3(3)	O6–B3–O2	104.4(3)
O7-B1-O5	102.0(3)	O7–B2–O8	114.6(3)	O4–B3–O3	103.1(3)
O3-B1-O5	123.4(3)	O6-B2-O8	105.3(3)	O6-B3-O3	112.2(3)
O1-B1-O5	101.5(3)	O1-B2-O8	101.7(3)	O2–B3–O3	108.0(3)
	$\varnothing = 109.5$		Ø = 109.3		$\varnothing = 109.5$
O8-B4-O9	121.8(3)				
O8-B4-O5	122.9(3)				
O9-B4-O5	114.9(3)				
	$\emptyset = 119.9$				

Fig. 2. Crystal structure of β -Dy₂B₄O₉.

distortions in the range of $102-121^{\circ}$. The metal ions in β -Dy₂B₄O₉ are coordinated by nine and 10 oxygen atoms, respectively (Fig. 6), whereby the Dy–O distances vary between 226 and 265 pm (Table 4).

For further investigations we calculated MAPLEvalues (Madelung part of lattice energy) [41–43] for β -Dy₂B₄O₉ and compared them with the MAPLE-values of the binary components Dy₂O₃ [44] and the highpressure modification B₂O₃-II [45]. For β -Dy₂B₄O₉, we received a value of 58980 kJ/mol in comparison to 59075 kJ/mol starting from the binary oxides (1 × Dy₂O₃ (15199 kJ/mol)+2 × B₂O₃-II (21938 kJ/mol) resulting in a deviation of 0.16%.

Also bond-valence sums were calculated for all atoms using the bond-length/bond-strength conception (ΣV) [46, 47] and the CHARDI conception (charge distribution in solids) (ΣQ) [48]. As bond-valence parameters for the bond-length/bond-strength conception, we used R_{ij} =137.1 for B–O bonds and R_{ij} =203.6 for Dy–O bonds [47]. Table 6 gives a comparison of the charge distribution calculated with both conceptions. The values confirm the supposed formal charges of Dy³⁺, B³⁺, and O²⁻.

4.1. In situ powder diffraction

To investigate the thermal behavior of the highpressure phase β -Dy₂B₄O₉, temperature-dependent measurements were performed on a STOE powder diffractometer Stadi P (Mo $K\alpha$; λ = 71.073 pm) with a computer-controlled STOE furnace. The heating element consisted of an electrically heated graphite tube

Fig. 3. Crystal structure of β -Dy₂B₄O₉, view along [001].

Fig. 4. Linkage of the B_3O_9 -units via two trigonal BO_3 -groups forming a six-membered ring.

holding the sample capillary vertically with respect to the scattering plane. Bores in the graphite tube permitted unobstructed pathways for the primary beam

Fig. 5. Linkage of the B_3O_9 -units forming a four-membered ring. The encircled area represents the fundamental building block of β - $Dy_2B_4O_9$.

as well as for the scattered radiation. The temperature measured by a thermocouple in the graphite tube was kept constant to within 0.2°C. The heating rate between different temperatures was set to 22°C/min. For temperature stabilization, a time of 3 min was given before start of each data acquisition. Successive heating of the high-pressure phase β -Dy₂B₄O₉ (Fig. 7) led in the range of 700–800°C to a decomposition into the normal pressure modifications π -DyBO₃, μ -DyBO₃ [49] and molten B₂O₃. Further heating showed the complete transformation of π -DyBO₃ into the high-temperature modification μ -DyBO₃ above 900°C. Subsequent cooling resulted in a retransformation to the room temperature modification π -DyBO₃ below 700°C.

4.2. Infrared absorption spectroscopy

The infrared (IR) spectrum of β -Dy₂B₄O₉ (Fig. 8) was recorded on a Bruker IFS 66v/S spectrometer scanning a range from 400 to 4000 cm⁻¹. The sample was thoroughly mixed with dried KBr (5 mg sample, 500 mg KBr) in a glove box under dried argon atmosphere.

Fig. 8 shows the section $400-2800 \text{ cm}^{-1}$ of the infrared spectrum. The absorption peaks between 790 and 1200 cm^{-1} are those typical for the tetrahedral borate group BO₄ as in YBO₃, GdBO₃, or TaBO₄ [50–52]. The typical absorptions of the triangular BO₃-group appear between 1450 and 1200 cm⁻¹ and below 790 cm⁻¹ as in LaBO₃ [53, 54] or EuB₂O₄ [55]. Due to

Fig. 6. Coordination spheres of Dy^{3+} (gray spheres) in the crystal structure of β -Dy₂B₄O₉.

Fig. 7. Temperature-dependent X-ray thermodiffractometric powder patterns of the decomposition of β -Dy₂B₄O₉.

Table 6 Charge distribution in β -Dy₂B₄O₉ calculated with the bond-length/bond-strength conception (ΣV) [46,47] and the CHARDI conception (ΣQ) [48]

	Dy1	Dy2	B 1	B2	B3	B4	01	O2	O3	O4	O5	O6	O7	O8	O9
$\Sigma V \\ \Sigma Q$	2.98 2.97	3.24 3.01	3.01 3.00	3.17 2.96	2.90 3.03	2.96 3.03	$-2.08 \\ -1.96$	$-2.11 \\ -2.05$	-1.90 -1.85	$-1.97 \\ -2.02$	$-2.08 \\ -2.00$	-1.99 -1.97	-2.17 -2.19	$-2.04 \\ -1.98$	-1.94 -1.97

the combination of one BO₃- and three crystallographic independent BO₄-units in the solid state, a detailed assignment of the vibrations is difficult. Although the sample consists mainly of crystalline parts (β -Dy₂B₄O₉)

we can not exclude the appearance of additional weak vibrations by the flux impurities. In the upper range $(4000-2800 \text{ cm}^{-1})$ no absorption bands due to hydrogen (OH) were detectable.

Fig. 8. Infrared spectrum of β -Dy₂B₄O₉.

5. Conclusion

In this paper, we described the synthesis of the new rare-earth oxoborate β -Dy₂B₄O₉ via multianvil high-pressure synthesis from Dy₂O₃ and boron oxide B₂O₃ in a flux of B₂O₃/Na₂O₂. β -Dy₂B₄O₉ exhibits a new structure type with bands of linked BO₃- and BO₄-tetrahedra which can be described with the new fundamental building block $2\Delta 6 \Box : \Delta \langle 3 \Box \rangle = \langle 4 \Box \rangle = \langle 3 \Box \rangle \Delta$. In contrast to the synthesis of α -Dy₂B₄O₉ (without flux) the presence of a B₂O₃/Na₂O₂ flux leads to the formation of a new polymorph. Although the synthesis takes place under extreme high-pressure/high-temperature conditions, where corner- and edge-sharing of BO₄-tetrahedra is observed in the case of α -Dy₂B₄O₉, we find only corner-sharing of BO₃- and BO₄-units in the presented β -Dy₂B₄O₉.

Acknowledgments

We thank Prof. Dr. W. Schnick, Department Chemie of the University of Munich (LMU), for his steady interest and continuous support of this work. Special thanks go to Dr. H. Piotrowski for collecting the single crystal data and Dipl. Chem. S. Correll for the in situ powder diffraction measurements.

References

- [1] P. Becker, Adv. Mater. 10 (1998) 979.
- [2] T. Sasaki, Y. Mori, M. Yoshimura, Y.K. Yap, T. Kamimura, Mater. Sci. Eng. 30 (2000) 1.
- [3] D.A. Keszler, Curr. Opin. Solid State Mater. Sci. 1 (1996) 204.

- [4] J. Weidelt, Z. Anorg. Allg. Chem. 374 (1970) 26.
- [5] H. Bergmann (Ed.), Gmelin Handbook of Inorganic and Organometallic Chemistry, C11b, 8th Edition, Springer, Berlin, 1991
- [6] H. Huppertz, B. von der Eltz, J. Solid State Chem. 166 (2002) 203.
- [7] E.M. Levin, C.R. Robbins, J.L. Warring, J. Am. Ceram. Soc. 44 (1961) 87.
- [8] S.F. Bartram, Proceedings of the Third Conference Rare Earth Research, Clearwater, FL, 1964, p. 165.
- [9] J.H. Lin, M.Z. Su, K. Wurst, E. Schweda, J. Solid State Chem. 126 (1996) 287.
- [10] J.H. Lin, S. Zhou, L.Q. Yang, G.Q. Yao, M.Z. Su, J. Solid State Chem. 134 (1997) 158.
- [11] J.H. Lin, L.P. You, G.X. Lu, L.Q. Yang, M.Z. Su, J. Mater. Chem. 8 (1998) 1051.
- [12] G. Canneri, Gazz. Chim. Ital. 56 (1926) 450.
- [13] I.V. Tananaev, B.F. Dzhurinskii, I.M. Belyakov, Izv. Akad. Nauk SSSR Neorgan. Mater. 2 (1966) 1791.
- [14] H.U. Bambauer, J. Weidelt, J.St. Ysker, Z. Kristallogr. 130 (1969) 207.
- [15] I.V. Tananaev, B.F. Dzhurinskii, B.F. Chistova, Izv. Akad. Nauk SSSR Neorgan. Mater. 11 (1975) 165.
- [16] C. Sieke, T. Nikelski, T. Schleid, Z. Anorg. Allg. Chem. 628 (2002) 819.
- [17] H. Huppertz, B. von der Eltz, J. Am. Chem. Soc. 124 (2002) 9376.
- [18] H. Huppertz, unpublished results.
- [19] H. Emme, H. Huppertz, Z. Anorg. Allg. Chem. 628 (2002) 2165.
- [20] H. Huppertz, Z. Naturforsch. 56b (2001) 697.
- [21] D. Walker, M.A. Carpenter, C.M. Hitch, Am. Mineral. 75 (1990) 1020.
- [22] D. Walker, Am. Mineral. 76 (1991) 1092.
- [23] D.C. Rubie, Phase Trans. 68 (1999) 431.
- [24] M. Marezio, H.A. Plettinger, W.H. Zachariasen, Acta Crystallogr. 16 (1963) 594.
- [25] H. König, R. Hoppe, M. Jansen, Z. Anorg. Allg. Chem. 449 (1979) 91.
- [26] H. König, R. Hoppe, Z. Anorg. Allg. Chem. 434 (1977) 232.
- [27] J. Krogh-Moe, Acta Crystallogr. B 30 (1974) 747.
- [28] J. Krogh-Moe, Acta Crystallogr. B 28 (1972) 1571.

- [29] A. Hymann, A. Perloff, F. Mauer, S. Block, Acta Crystallogr. B 22 (1967) 815.
- [30] J. Mascetti, M. Vlasse, C. Fouassier, J. Solid State Chem. 39 (1981) 228.
- [31] Y. Zhang, X.L. Chen, J.K. Liang, T. Xu, J. Alloys Comp. 333 (2002) 72.
- [32] J.W. Visser, J. Appl. Crystallogr. 2 (1969) 89.
- [33] W. Herrendorf, H. Bärnighausen, HABITUS, Program for Numerical Absorption Correction, University of Karlsruhe/ Gießen, Germany, 1993/1997.
- [34] G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.
- [35] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [36] P. Becker, Z. Kristallogr. 216 (2001) 523.
- [37] P.C. Burns, J.D. Grice, F.C. Hawthorne, Can. Mineral. 33 (1995) 1131.
- [38] J.D. Grice, P.C. Burns, F.C. Hawthorne, Can. Mineral. 37 (1999) 731.
- [39] F.C. Hawthorne, P.C. Burns, J.D. Grice, in: E.S. Grew, L.M. Anovitz (Eds.), Boron: Mineralogy, Petrology, and Geochemistry, Reviews in Mineralogy 33, Mineralogical Society of America, Washington, DC, 1996.
- [40] M. Marezio, J.P. Remeika, J. Chem. Phys. 44 (1966) 3348.

- [41] R. Hoppe, Angew. Chem. 78 (1966) 52;
- R. Hoppe, Angew. Chem. Int. Ed. Engl. 5 (1966) 95.[42] R. Hoppe, Angew. Chem. 82 (1970) 7;
- R. Hoppe, Angew. Chem. Int. Ed. Engl. 9 (1970) 25.
- [43] R. Hoppe, R. Hübenthal, MAPLE, Program for the Calculation of MAPLE-Values, Vers. 4, University of Gießen, 1993.
- [44] W. Hase, Phys. Status Solidi 3 (1963) 446.
- [45] C.T. Prewitt, R.D. Shannon, Acta Crystallogr. B 24 (1968) 869.
- [46] I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 244.
- [47] N.E. Brese, M. O'Keeffe, Acta crystallogr. B 47 (1985) 192.
- [48] R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H.P. Müller, K. Bernet, J. Less-Common Met. 156 (1989) 105.
- [49] E.M. Levin, R.S. Roth, J.B. Martin, Am. Mineral. 46 (1961) 1030.
- [50] M. Ren, J.H. Lin, Y. Dong, L.Q. Yang, M.Z. Su, L.P. You, Chem. Mater. 11 (1999) 1576.
- [51] J.P. Laperches, P. Tarte, Spectrochim. Acta 22 (1966) 1201.
- [52] G. Blasse, G.P.M. van den Heuvel, Phys. Stat. Sol. 19 (1973) 111.
- [53] W.C. Steele, J.C. Decius, J. Chem. Phys. 25 (1956) 1184.
- [54] R. Böhlhoff, H.U. Bambauer, W. Hoffmann, Z. Kristallogr. 133 (1971) 386.
- [55] K. Machida, H. Hata, K. Okuno, G. Adachi, J. Shiokawa, J. Inorg. Nucl. Chem. 41 (1979) 1425.